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Abstract-The development of a time domain boundary element method for allisymmetric quasi­
static poroelasticity is discussed. This new formulation. for the complete Biot consolidation theory.
has the distinct advantage of being written ellclusively in terms of boundary variables. Thus. no
volume discretization is required. and the approach is ideally suited for geotechnical problems
involving media of infinite ellten\.

In the presentation. the required allisymmetric integral equations and kernel functions are first
developed from the corresponding three-dimensional theory. In particular. emphasis is placed on
the analytical and numerical treatment of the kernels. This is followed by an overview of the
numerical implementation. and a demonstration of its merits via the consideration of several
ellamples.

INTRODUCTION

There is a large class of practical engineering problems that involve both axisymmetric
geometry and loading. While, in these situations, a full three-dimensional analysis is valid,
a reduction in the dimensionality of the problem is often quite beneficial. In the present
paper. a boundary element method (REM) is developed for axisymmetric quasistatic poro­
elasticity. Unlike the previous work on the subject, this new formulation utilizes the time­
dependent fundamental solutions for Riot's consolidation theory and, consequently.
involves boundary quantities exclusively. As a result, only the one-dimensional curve.
representing the generator of the axisymmetric poroelastic body, needs to be discretized.
Of course, this greatly simplifies the task of geometric modelling. Additionally, since the
algorithm operates directly in the time domain, very accurate solutions arc possible.

The initial application of boundary element methods for axisymmetric bodies includes
the indirect formulations of Kermanidis (1975) in elasticity and Jaswon and Symm (1977)
in potential now. Meanwhile, Cruse el al. (1977) provided the first direct BEM for axisym­
metric elasticity, including both centrifugal and steady-state thermal loading. The latter is
equivalent to the examination of steady poroelastic response via the poroelastic-thermo­
clastic analogy (Terzaghi, 1943). The above boundary clement references address generic
axisymmetric bodies. The specific problem of the elastic response of piles was examined
previously by Butterfield and Banerjee (1971) using an indirect BEM.

Moving next to the realm of quasistatic poroelasticity, Banerjee and Butterfield (1981)
discuss a staggered procedure for solving the coupled equations. The algorithm requires
solution of the transient pore nuid now equation followed by a deformation analysis at
each time step. This is not a boundary-only formulation, and complete volume discretization
is necessary. As an example, the consolidation ofa strip foundation was examined. Aramaki
and Yasuhara (1985) applied this same scheme for axisymmetric poroclasticity, and exam·
ined K o and isotropic consolidation of a cylinder. Once again, for their approach, cells are
required through the domain.

More recently, the present authors have developed time-domain boundary element
formulations for both two- and three-dimensional problems ofporoelasticity (Dargush and
Banerjee, 1989a), which eliminate the need for volume discretization. These formulations
are based upon the fundamental solutions of Nowacki (1966), Cleary (1977) and Rudnicki
(1987). Meanwhile, the corresponding coupled thermoelastic BEM is provided in Dargush
and Banerjee (1989b. 1990), along with a summary of the well-known analogy. The present
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work extends these BEM formulations to axisymmetric consolidation, and thus provides
the first boundary-only solution for this class of problems.

In the nex.t section, the governing ditTercntial and integral equations are presented for
general three-dimensional porodastic bodies. Then, the integral formulation is specialized
for the axisymmetric case via a transformation to cylindrical coordinates. The result is
an exact integral equation for axisymmetry. However, for practical engineering analysis.
approximations must be introduced in order to solve the applicable initial-boundary value
problem. The necessary approximations are provided in the section on numerical implemen­
tation, which describes the present boundary element method. Finally. several numerical
examples are investigated which highlight the attractiveness of the BEM approach.

Indicial notation is used throughout. Thus. summations are implied by repeated indices.
commas represent differentiation with respect to spatial coordinates, and a superposed dot
denotes a material time derivative.

GOVERNI:-';G EQUATIONS IN THREE DIMENSIONS

The differential equations governing three-dimensional consolidation. as developed by
Biot (1941), can be written in the following Cartesian fornl (Dargush and Banerjee. 1989a) :

u. +11)11,.1; + lUI,. II -Ill'., +f = 0

(
f/~ ). .

"1'.11 - ;-'. I' -llII,.; + fjJ = O.",,-i,

( la)

(I b)

In (I), II, represents the displacement,,, is the excess pore pressure,j; is the body force per
unit volume, .lnd fjJ is the time rate of volumetric fluid supply per unit volume. Latin indices
vary from one to three. Me.tnwhile, ..1. and II arc the drained Lame c1'lstic constants, i." is
the undrained clastic modulus, II: is the permeability and

I .3 ( i." -i, )
I = B .3..1." +2/1

(2a)

where B is Skempton's pore pressure coellicient. ror media in which both the fluid and
solid constituents arc incompressible, fJ = I. Additionally, the coelficient of consolidation
is defined as

(2b)

while the drained clastic modulus E. drained Poisson's ratio I'. and undrained Poisson's
ratio Vu arc written 'IS

E = ~1(3i.-±-3!l!
(A. +Jl)

),
v = ..-----..

2{A. + II)

i· u
I' = "'-""--"

II 2()." + Il) .

(2e)

(2d)

(2e)

The corresponding integral equations can be developed either by operating directly on
(I) or by starting with the poroelastic reciprocal theorem defined by ronescu-Cazimir
(1964). With zero initial conditions and the absence of body forces and sources, both
approaches lead to the following integral equations (Dargush and Banerjee, 1989a):
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in which the concept of generalized displacement (utd and traction (III) is introduced with
pore pressure and mass flux (q) occupying their respective four components. Thus,

UII = {III II; UJ p:T

III = :/1 I; I J q:T.

(4a)

(4b)

All Greek indices in (3) vary from one to four. Additionally, gil. andfll' represent kernel
functions, which are derived from the fundamental solutions of three-dimensional poro­
elasticity (Nowacki. 1966; Cleary, 1977). These are defined in Dargush (1987) and Dargush
and Banerjee (1989a,b, 1990). The integration is conducted over the surface of the body S
and over time, from zero to t, as indicated by the standard symbol (.) for Riemann
convolution integrals. Lastly, the tensor <"/I. depends only upon the local geometry at ~, and
reduces to a generalized delta function <5/1• for ~ inside S. Notice, in particular, that the
displacement and pore pressure are written strictly in terms of boundary quantities, and
that domain integrals arc not involved. Consequently, the present approach differs sub­
stantially from that of Banerjee and Buttertield (1981) and Aramaki and Yasuhara (1985).

As discussed in Dargush and Banerjee (1989a), the kernels .cit,. andj;,. can be separated
into steady-state and transient components. That is,

(Sa)

(50)

In this form, .111 the singularities .Ire contained in the steady-state G/h and £7/h components.
The remaining transient portion is completely non-singular.

INTEGRAL I'ORMULATION I'OR AXISYMMETRY

For ;'Ixisymmetric geometry, it is convenient to introduce a cylindric'll coordinate
system (r, lJ, =). In this system, the surface S is formed oy the generator C which lies in the
r= plane as shown in Fig. I.

z

",. ""

"·r<~ "c

!
s

Fig. I. Axisymmetric geometry.
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Transforming the generalized displacements and tractions to this cylindrical system
produces

u, = Tp,up

1. = Tp,lp

where

u, == {u, 110 u: pV
1. == {I, to I: q}T

[ cosO
-sinO 0

f] .T _ sin 0 cosO 0
II· - 0 0 I

0 0 0

(6a)

(6b)

(7a)

(7b)

(8)

Then. after introducing (5)-(8). the governing integral equations can be rewritten as

where

C/I, = T.,'flGy,! T.s.r

Fp,. = TypFY'1 T6,r

-Ir T tf T-g/I,. = ,pg,6 ,!,r

J~t' T J't' T-Il> = ;'/1 ;'6 ,s,r

(lOa)

(lOb)

(10e)

(IOd)

(lOe)

with fl' representing the transformation in (8) evaluated at e.
Restricting the response. to the purely axisymmetric case, eliminates all circumferential

variation of the generalized displacements and tractions. In that case. III/ = 0 and 10 == O. As
a result. the second degree of freedom can be eliminated from consideration. and (9) can
be collapsed to a set of three equations. Thus. the quantities in (9) arc redefined such that

Additionally.

1- - {I I: q}T./I - ,

( Ila)

(II b)

(12)

with similar notation holding for FII,. g~.. lN, and cp,.. With this in mind. eqn (9) becomes:
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(".il(';)ii~(';. r) =L[G~x(X; ~~lp(X. r)-F!Jx(X; ~)U~(X. r)] dC

+ r en [g-;Jx(X;~. r) .lp(.Y') -l/:'x(X;~.r). UI/(X)] de dC (13)Jc Jo

where

(14a)

(I4b)

This circumferential integration in (14) can be evaluated analytically in terms of elliptic
integrals for all of the steady-state components. The components Grr • G,:. G:,. G::. F". F,:.
F:, and F:: are identical to those of axisymmetric elasticity. Their explicit form is defincd in
Henry ('I al. (1987). Meanwhile. Gpp and Fpp are the potcntial flow axisymmetric kernels as
presented in Bancrjee und Butterfield (1981). The coupling terms Gp" Gp:. Fp, and Fp: are
given by Bukr ,lOd Fenner (1983) in their formulution for steady-state thermoelusticity. The
remaining components for the steady kernels are zero. For reference. the entire Gf/x and Ff/x
kernels ure provided in u consistent notation in Dargush (1987) and defined here in Appen­
dix /\.

The integrul equutions (13) are exact statements for axisymmetric qu,lsistutic poro­
elasticity. However. for the solution of praeticul problems of soil consolidution. upproxi­
lllutions must be introduced. For exumple. unlike the ubove treutment for the steudy-state
components. the circumfcrentiul integrution of the transient portion of the kernels cunnot
be expressed in closed form. The numericul treutment of (13) is the subject of the next
section.

NUMERICAL IMPLEMENTATION

Details of a numerical algorithm for two and three-dimensional poroelasticity have
been given previously by Dargush and Banerjee (1989a). Consequently. this section will
focus on those items which arc of particular importance to axisymmetry.

The application of (13) for engineering analysis requires discretization and approxi­
mation in both time and space. For the temporal representation, the time from zero to r
is subdivided into N equal increments of duration Ar. Within each increment, the primary
variables up and lp are assumed constant. Thus, during the nth time step. the generalized
displucements ,lOd tructions are li~(X) and i7,(X). As a result, the integral equations take
lhe form

("fJx(~)/i;(~) = Ie lG/lx(X; ~)t;(X) - FjJx(X; e)li;(X)] de

+ t {r [G;x- H I(X; e)t~(X) - F;x-H
I (X; e)lip(X)] dC} (15)

n- I Jc

where
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( 16a)

(I6b)

with

[n light of the transformation (10). eqns (17) can be rewritten as

G-"-~t'l T GN-'t+IT~II> =;'(1 ;.,) ,I,r

F-:N-~t' I = T FN>-~+ I T~ r
fI, ;'/1 ,,) ""

where the Cartesi..m transient kernels are

in'"
;.V ~ I' I .: _ >If. :I )',1 (x. ,,) - j )',1(x. t. 1,. t) dt.

I~ \)11,

(17a)

(17b)

(18a)

(18b)

(19a)

(19b)

The time integration present in (19) can be performed analytically. The resulting transient
kernels G~l ~. I and F;~, n" I arc provided in Appendix B. These comprise the transient
portion of the three-dimensional time-integrated kernels employed in Dargush and Banerjee
(11)89a). It should be emphasized that G;~~" I and F~~n .. I are completely non-singular.

Although the integration in (19) is determined analytically. it is not possible to evaluate
the circumferential integral of (16) in closed form. Consequently. this integration is per­
formed numerically. Since the kernels involved arc non-singular. standard Gauss quadmture
formulas arc applicable. However. for X in the proximity ofe. subsegmentation and higher­
order Gaussian rules arc required to control error. As time progresses. the transient portions
of the poroclastic kernels not only diminish in magnitude. but also become more gradual
in their spatial variation. In order to take full advantage of this behavior. the present
implementation employs adaptive circumferential integration schemes which depend upon
the spatial relationship between X and ~. as well as the time elapsed between t and r.
Eventually. the subscgmentation is eliminated and only a few Gauss points are required
even for nearby points.

With the temporal and circumferential integration complt.:tcly defined. it remains to
consider the discretization of C in the r-= pl'lIle. For this. the approach taken by Henry et
al. (1987) is utilized. Three-noded quadratic. conforming surface elements arc employed
with either linear or quadratic variation of the generalized displacements and tractions.
Integration is accomplished numerically through the use of adaptive subsegmentation and
G'lussian quadrature. The strongly-singular FII, kernel components arc determined via the
indirect rigid body and innation mode techniques. During the first time step. when N = I.
both steady and transient kernels must be integrated. That is. from (15). integration of Gil'
and Gil. is required for multiplication by til. while Ffl~ and FJ, arc needed in conjunction
with u/l. However. for subsequent time steps. only the transient non-singular kernels. GjY.
and FjY•. must be integrated. For example. with N = 2. eqn (15) can be written as
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{#.(~)UJ(~) = Ie [G#.(X; ~)tg(X) - F/I.(X; ~)uJ(X)1 dC

+ Ie[GJ,(X; ~)tg(X) - FJ~(X; ~)uJ(X)] dC

+Ie[GJAX; ~)tJ(X)-FJ.(X; ~)liJ(X)ldC. (~O)

The first four kernels in(20) were already determined during the first time step. as discussed
above. Thus. only GJ. and FJ. require integration.

Collocation provides the basis for the development of the system ofgoverning algebraic
equations. Thus. the spatially-discretized version of (15) is written at each boundary node.
After imposition of the boundary conditions. the system equations are solved at each time
step by invoking a UNPACK-based solver. Afterward. secondary boundary quantities.
such as effective stresses. can easily be determined from the constitutive law. along with
compatibility relationships.

Since the implementation is accomplished within a general-purpose boundary element
code. a number ofadditional features are readily available for practical engineering analysis.
Perhaps the most significant of these items is the ability to analyze substructured problems.
This not only permits e'ltension of the formulation to multilayered soils. but often provides
computational etliciencies. Another important feature concerns the availability ofenclosing
clements which were first employed for time-dependent problems by Ahmad and Banerjee
(19XX). Enclosing clements allow for closure of bodies ofintinite e'ltent for the determination
of the coellicients corresponding to the strongly-singular integrals. The nodes associated
with enclosing clements do not contribute unknowns or equations to the overall system.
Furthermore. since the fUl1lhllllental solutions 'lutomatically satisfy the radiation conditions
on infinite boundaries. there is no need to introduce artifici'll boundaries as is typically done
in tinite clement analysis. Other capabilities include symmetry about the r-O plane. sliding
interfaces. time-dependent bound'lry conditions. and the usc of local coordinates. Several
of these features arc illustrated in the ne'lt section. which focuses on the validation of the
new poroclastic BEM formulation.

APPLICATIONS

CO/lSolitiatio" ofa spilL''''
As a first c'lample. the classical problem of thc consolidation of a sphere is considered.

This problem was first solved by Cryer (1963) in terms of an infinite serics. and formed the
basis of a comparison between the consolidation theories of Biot and Terzaghi.

For the boundary element analysis. the four element model depicted in Fig. 2 was
employed. Each clement permits quadratic variation of the generalized displacements and
tractions. Symmetry about the r-O plane is assumed. One interior point is also included to
monitor response at the center of the sphere.

All dimensions and materi'll properties are normalized to correspond to those used by
Cryer. Thus. for example.

(lla)

(lib)

with the subscript c signifying Cryer's notation. Furthermore. let
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CONSOLIDRTION OF R SOLID SPHERE

Boundary Element Model

• Cor-ner node
o Mldnode

X I~ter"',or pOln~

)(

Fig. 2. Consolidation of a sphere-boundary element method.

(:!2a)

r
R=~

Cl
(22b)

where a is the radius of the sphere. As ~I result. the radial displacement can be written as
UK(R, T) and the pore pressure as P(R. T).

The boundary clement solutions. obtained from the general-purpose computer pro­
gram GPBEST. are compared to the series of solutions in Figs 3 and 4. Three cases

CONSOLIDRTION OF A SPHERE

Radial Displacement
1. 000 r-------------------==="".......--t===---_tit----fl!

.800

o '0 - 0.50
)( '0 - 0.25
Cl '0 - 0.01

--- Cryer (1963)

.600

.800

.200

.000 ""-- ........ ........ ........ --'- -'

.000 .200 .400 .600

T 1/2

Fig. 3. Consolidation of a sphere-radial displacement.
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CONSOLIDATION OF R SPHERE

Po~e P~essu~e vs Radial DispJace~ent

.400

o

1.800 I

L6~f
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~
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.800

.600 C~ye~ Cl963l

.400 0 "c· 0.50
x "c· 0.25
0 "c· 0.0l.200

.000
.000 .200

U
R
(I, Tl

Fig. 4. Consolidation of a sphere-pore pressure vs radial displacement.

(II, = 0.50. 0.25 and 0.0 I) arc considered. In general. excellent correlation with the results
of Cryer is obtained. Notice, in Fig. 4. the initial increase in pore pressure with increasing
UK for I', = 0.50 .tnd lIe =0.25. This phenomenon is the well-known Mandel-Cryer effect
which is present in Riot's theory. but absent for Terlaghi consolidation. For J.l,; = 0.0, the
governing equations of Riot reduce to those of Terzaghi. such that no Mandel-Cryer
effect exists. It is evident from the graphs that the present boundary element formulation
accurately reproduces the entire range of this behavior.

Consolidation under a circular load
Analytical solutions are also available for the consolidation of a single poroelastic

stratum beneath a uniform vertical circular load. Let H represent the depth of the soil layer
and a be the radius of the loaded area. The lower boundary of the soil layer is smooth. but
impervious. while free drainage is permitted along the entire upper surface. For comparison
non-dimensional forms of the material parameters are utilized. (n particular. let E = 1.0,
v = 0.0. 1\ = 1.0. \'u = 0.5 and B = 1.0. (The diffusivity is unity for this set of properties.)

A uniform traction I: = - 1.0 is applied over the circular area suddenly at time zero
and then maintained at thatlcvel. (n this investigation. two cases are considered. H/a = 1.0
and 10. Roth were examined by Gibson el al. (1970). who provided a semi-analytical
solution for these axisymmctric problems.

The boundary clement mesh employed for the GPBEST analysis is provided in Fig. 5
for II/a = 10. Considerablc refinement is used near the loaded region. Additionally. notice
that the mesh is truncated at a distance ria = 40. Beyond that distance. the upper and lower
surfaces have negligible contribution. However. since the rigid body and intlation mode
techniques arc utilized. several enclosing elements are introduced to ensure the accurate
calculation of the strongly-singular diagonal blocks of F/1•. A topologically-similar model
was also used for the H/a = 1.0 case. The boundary element results for the single poroelastic
layer are compared with those of Gibson el 01. in Fig. 6. where the non-dimensional time

c,:r
T=-r

a
(23a)

and the degree of consolidation
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CONSOLIDRTION UNDER R CIRCULRR LeRD

Boundary Elemen~ Model
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Fig. 5. Consolidation under a eircul;lr load·-bvundary element modeL

(23b)

with VAt) represellting the verticul displ'lcement of the soil at the center of the loaded urea
at time t. From the figure. the degree of consolidution correlates very well over the entire
process. thus validating the boundary clement formulation for bodies of infinite extent.

Multilayer unalytical solutions arc not available. however the prescnt HEM can be
readily applied. For example, consider two soil layers. The upper layer has a depth HI = 2,

CONSOLIDATION UNDER A CIRCULAR LOAD

Single Layer Results

H/a .. I
Analytical
GP-ae:ST

H/a .. 10
Analytical
GP-ae:STo

-.25

-.50

-.75 c

~,
~'"

~
~

".""

'-..~
-1.00 '- -'- J -L-_..:::.... -----l-J

-3. -2. -I. 0. I.

c
o

o
'"'c

(3

log en
Fig. 6. Consolidation under a circular load-single·layer results.
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CONSOLIDATION Ul'lDER A CIRCULAR LORD

Two Layer Boundary Element Model

s.e I

!
I

L .Ie.e. e • e • x

~.e I
I

.e.e.e.e. e • e • x

I x
-5.11l L

I x

x

-111l.a .e.e.e.e. e • e • x x

-15.a • Corner node

o Midnode
x Enclosing point

-211l. a L-__..L-__~ ---:-~=--_~-=-_~:-::-_---:~=--_~-=-_-=

-5.11l .11l 5.11l 10.11l 15.0 20.a 25.0 30.0 35.0

Fig. 7. C\lnsolidation under a circular load-two-Iayer Illlundary dement model.

while the thickness of the bottom layer is 1/~ = R. It is assumed that E = 1.0. v = 0.0.
l'u =0.5 .tnd B = 1.0 for both soils. while the valuc of thc permeability may differ.

The bound<try clement mesh for the two-I<tyer .tnalysis is shown in Fig. 7. and the
results arc provided in Fig. 8. f len:. the non-dimensional time is with respect to the coellicicnt
of consolid.ttion of the upper l<tyer. As expected. if the lower soil is more pcrmc'lble. then
Ihe consolidation process is expedited. On the other hand. while a less permeable layer
relards consolidalion. this el1i:ct is not as dramatic. Naturally. this analysis could be
extended to several 'Idditionallayers. eaeh with different poroclastic material constants. AI
Ihis poinl. it is worth mentioning that since the present HEM formulation utilizes a fully

CONSOLIDATION UNDER A CIRCULAR LOAD

Two Layer Results (HI = 2; H2 = 8; a = I)
.00 r------------------------------,

c ~~0
-.25-..

~'"-0-
~0

'"c "-0
u -.50 ~

.... x
0

II)
II)

+~ AnalytIcal Ckl/k2 • I ) x
01
II) + GP-Be:ST (k l/k2 • 16 ) +c:::l -.75 )(

0 GP-BEST Ck t/k2 - I )
+x GP-BEST Ckl/k2 - 1/16 )

x

-1.00 L...- L- ..L- ..L- ----J

-3. -2. -1. 0. l.

log (Tl
Fig. 8. Consolidation under a circular load-two-Iayer results.
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implicit time-marching scheme. stable numerical results are produced over a wide range of
time steps. Thus. the method can handle problems for which the coefficient ofconsolidation
of various layers differs by several orders of magnitude.

Consolidation around a pile
For the final application. consolidation around a vertically-loaded permeable pile is

examined. The straight. flat-bottomed. cylindrical pile has a length (L) of 30 ft and a 2 ft
diameter (D). The second under-reamed pile. detailed in Fig. 9. was also investigated for
comparative purposes. In both cases. the pile is assumed to be fully-saturated concrete with
the following poroelastic properties:

E = 3.0 X 106 psi

v = 0.3

Vu = 0.41

k = l.Ox 10- 7 ins~'

y•. = 0.036 lb in - J

1\ = k/y",.

Meanwhile. the surrounding soil. which occupies the remainder of a half-space. is
assumed to be a uniform. isotropic clay. The clay properties arc taken as:

E = 15 X 10J psi

v = 0.2

Vu = 0.5

k = 8.0 x 10 K in s I

CONSOLIDATION AROUND A PILE

Under-reamed Pi Ie

110'. r--------------r-,-------------,
I
I

a.

-110' •.......
~

N

-210'.

-310'.

a.

rCft)

Fig. 9. Consolidation around a pile-undcr-rcamed pile.
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The pile-soil interface is considered fully bonded.
Starting at time zero. a unifonn downward vertical traction is continuously applied to

the head of the pile. In the boundary element analysis of the ensuing consolidation process.
a two-region model is required. The pile model includes refinement near the top and bottom
corners. Discretization of the soil is only needed along the pile interface and the half­
space surface. Consequently. the modeling required for this problem is minimal. Enclosing
elements. once again. pennit the finite truncation of the mesh without a significant effect
on the solution accuracy.

The consolidation history for the two types of piles is plotted in Fig. 10. In the abscissa.
the dimensionless time (T) is detennined from the radius of the pile (R) and the coefficient
of consolidation of the soil (C,..sool)' Thus.

(24)

while the ordinate depicts the degree of consolidation based upon the pile head settlement.
Notice that in comparison with Fig. 6. the consolidation around this long narrow object
(i.e. the pile) is very slow. For the straight pile qnly 57% of the process is complete for
T = 133. The under-reamed pile. having a somewhat bigger base. consolidates slightly
faster. However. for both piles the fully-drained settlement is only about 15% greater than
the instantaneous undrained response.

Resides settlement. load resistance and interface shear stresses are also of interest. In
the straight pile. approximately 4% of the applied axial load is reacted by normal tractions
on the base of the pile. The remainder is resisted by shear along the shaft face. The
distribution ofshear streS!i along the length of the pile is shown a short time after application

CONSOLIDATION AROUND A PILE

GP-BEST Results
.00 ,------------------------------,

0
c x 0

0
~ -.25 x 0x

+> x'" 0
"t3 0- X

0 X 0

'"c x 0
c

u -.5'" x...
00 x
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III
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en
~
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-I. 00 L.- ....L..... ~ _'_ __'_:~------'
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log en
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(i.e. T = 1.5) and under drained conditions (i.e. T = 00), in Fig. II. The drained resulLs arc
quite similar to those obtained by Butterlicld and 8anerjee (1971) for moderate LID
compressible piles. However, notice that that short time response includes much higher
shear stresses near the surface of the half-space. In Fig. 12, the corresponding resulLs arc
presented for the under-reamed pile. While the shear stress over much of the length is lower
than that for the straight pile, there exists considerable stress concentration in the region
ofgeometric transition. Once again, high shear stress occurs ncar the surface at short times.
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Finally. it should be noted that the under-reamed pile base reacts appro~imately 12%
of the applied load under drained conditions. and roughly 15% during the initial stages of
consolidation.

CONCLUSION

A boundary element method has been developed for axisymmetric problems governed
by Biot's consolidation theory. Unlike previous approaches. the present formulation is
written directly in the time domain and invokes only boundary quantities. Volume dis­
cretization is completely eliminated. Additionally. since the kernel functions satisfy the
radiation boundary conditions. there is no need to introduce artificial boundaries or con­
ditions for problems involving regions of infinite extent in one or more spatial dimensions.

In the formulation. the three-dimensional fundamental solution is decomposed into
steady-state and transient components. The steady-state components are integrated semi­
analytically in the circumferential direction. while the remaining non-singular transient
portions are treated numerically.

The entire numerical implementation is accomplished in a general manner. including
quadratic elements and multiple regions. Several examples were investigated in detail to
emphasize the accuracy and attractiveness of this new BEM.
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APPE:-';D[X A AX[SY~f~fETR[C STEADY-STATE POROELASTIC KER:-';ELS

This Appendix details the generalized boundary kernels for axisymmt:tric sll:ady-state poroelasticity. These
kernels are used in conjunction with numem:al tangential integration of the transient portIOn of the three­
dimensional kernels to produce solutions for axisymmetric soil consolidatll)n.

[n the following.

n,(R.Z)

nJR.Z)

X"'.t, = :R

~ =.;, = {r

Z:r
.1 r-,

coordinates of integration point or ring source.

coordinates of field point.

normal in , direction at integration point.

normal in : direction at integration point.

The indices i. j assume the values I and ~ only or. equivalently rand :. ~feanwhile. the index p refers to a pore
pressure or flux component in the third position of the generalized displacement or traction vector. resp~'Ctive1y.

Thus. for example. II, is the pore pressure. while I, represents the flu,x. The Greek indices 7../1 vary from I to 3.
Then. for the displacement kernel. let

where

K(m) = c()mplete Elliplic Integral ()r thc liN kinJ

1':(m) = complete Elliplic Integral or Ihe SeCl)nJ kinJ

'" l.'..I" =1< (h,,\11- ,")
r 1/

all
A" ~ RI/

",l.
,11

II"

II,

II

CI, ( "\fl.')- h,l/' + .
,UI/ 1"

",I 1- , I
U// 1/

tlil.
, IV

'1"11

~"Il'
p'lI

,1,/. = 0

A" = 0

tI.N
..I,,, = ;/1

~I/.l.

Ap, = ~"'i-

II,{, = 0

II,{. = 0

'1 = z-:
II' = (R+,)' +l.'
p' = ((I<-,)'+l'J
.\1 = R'+,'+l'
N=I<'-,'+l'
11 = R' -,' -l'

4R,
m = Ii'

I<
tI, = R1tII(~) h, = (3-4.,)

1</1
II z = 4~(-T+2~)

R
tl, = j~~'
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While. for the traction kernel.

t,: == [ -(R~)a:~K(m)-(R~~:)al~£(m)},+[(~)alKK(m)-(~:)£(m)}:

t" == [(R~)U)~K(m)+e~;r) - R~)a)~£(m)},+[C2:~)£(m)}:

where

N:'i'l cA i /, cB'1 cK c£
7fR== (JR K+aii£+A"vR+B"cR

N;'I /1 ..... / (1B., oK (J£
-;'12 == CZ K+ iJZ E+A'liJZ+ B'I(lZ

913

D..." 2u l h. /
DR- '= riJ -( .A"

;JA,.-r,1i '= -ell .... ,:

r1B" 2a"~1
-fiR == - Rrll -el. B"

aB,: 2u l l (I )
ijif == plii - R+(1: n"

rlB., 2u l Rl
~._'. == -,--- -dJO.,
(1R r/I-II .

DB..
iTit == -d:B"

DB" 2u l l 1
/1Z == - Rrll":- Hi 0"

vA" U 1 1
vZ == RJ/- H! A"

(lA" Ul 1
DZ- == - rH - II J A"

r)A" 1
vZ- == - iii A"

2(R-r)
eI. ==P.+ --.-. P'

ell'" l(~ + ~2)
d~ == N-42. J

d, ... N+2Z 1

2 2
1' •

•fl ... b.(R+r) + -. (M -2R-)
P

2t 2Rr M
sl ...bl-~+?
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,'K (.\f-2R')P ,'£ (J/-2R')Q
(~ = 2R t'R = - -2RHT '"

tK
-= -2.P
CZ

£ K
P=-,--,

p' H'

t'E l
U=H: Q

Q = K-£.

APPENDIX B: THREE-DIMENSIONAL TRANSIENT POROELASTIC KERNELS

This appendix contains the detailed presentations ofall the transient kernel functions utilized in the poroelastic
boundary element formulation. These thn..e-dimensional kernels are based upon continuous sour...-e and force
fundamental solutions. As a result. the following relatillnships must be used to determine the proper form of the
functions required in the boundary element discretization. That is.

G;.(X;~) = Gj/o(X; ';.nlir} for n = I

G;.(X;~) = Go.(X; ';.nlir) -G,,.(X;~.(n l)lir) fllr n> I.

with similar expressions holding for the remaining kernels. In the spl.'Citication of these kernels below. the
arguments (X;.;. r) are assumed.

The indices

i. i. k./ vary from I to 3

'X./I vary from I to 4

pequals .I.

Additionally.

x, c(}ordin'ltes of integration point

~, c{)()flJinatcs of field point

YI =.\.', -~J

,
'1 .~ (c,ri':

Vu -v
c, = .

I-I'u

For the generalized transient displ:u:cment kernel.

I I [(1),1',) (. 1G = -_... __.... - ..-: ",(») + ii }i/.(tl)
-/ f61t, p(l -1') ,!" '/ -/ ..

G, = L(_-;-L)[(~).tJ\('Il]
p 41t 11:( ... +2/1) ,

I ( II )[(.1") ]GPJ = H;t II:(i. + 2Jli -; .11,(11)

Gpp = 4~r 0)1.'1,(11)1

whereas. for the generalized transient traction kernel.
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/z('O = -(', {", -h,:
/,('0 = (',{",+"z}

· "', 3",
1,('0 = ;,t -~Z,

· "d'O "',I,('tl = .. 'rl,,1

· '(") 6h I ('tlI,('tl = -erl :! + "z

'(") :!",('Of,('tl = -erl :!.t- "z

I.('tl = -",('tl·
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