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Abstract—The development of a time domain boundary element method for axisymmetric quasi-
static poroelasticity is discussed. This new formulation, for the complete Biot consolidation theory,
has the distinct advantage of being written exclusively in terms of boundary variables. Thus, no
volume discretization is required. and the approach is ideally suited for geotechnical problems
involving media of infinite extent.

In the presentation, the required axisymmetric integral equations and kernel functions are first
developed from the corresponding three-dimensional theory. In particular, emphasis is placed on
the analytical and numerical treatment of the kernels. This is followed by an overview of the
numerical implementation, and a demonstration of its merits via the consideration of several
examples.

INTRODUCTION

There is a large class of practical engincering problems that involve both axisymmetric
geometry and loading. While, in these situations, a full three-dimensional analysis is valid,
a reduction in the dimensionality of the problem is often quite beneficial. In the present
paper, a boundary clement method (BEM) is developed for axisymmetric quasistatic poro-
clasticity. Unlike the previous work on the subject, this new formulation utilizes the time-
dependent fundamental solutions for Biot's consolidation theory and, conscquently,
involves boundary quantitics exclusively. As a result, only the onc-dimensional curve,
representing the generator of the axisymmetric poroclastic body, needs to be discretized.
Of course, this greatly simplifies the task of geometric modelling. Additionally, since the
algorithm operates directly in the time domain, very accurate solutions are possible.

The initia! application of boundary element methods for axisymmetric bodies includes
the indirect formulations of Kermanidis (1975) in elasticity and Jaswon and Symm (1977)
in potential flow. Meanwhile, Cruse et al. (1977) provided the first direct BEM for axisym-
metric elasticity, including both centrifugal and steady-state thermal loading. The latter is
equivalent to the examination of steady poroelastic response via the poroclastic-thermo-
elastic analogy (Terzaghi, 1943). The above boundary element references address generic
axisymmetric bodies. The specific problem of the elastic response of piles was cxamined
previously by Butterfield and Banerjee (1971) using an indirect BEM.

Moving next to the realm of quasistatic poroelasticity, Banerjee and Butterficld (1981)
discuss a staggered procedure for solving the coupled equations. The algorithm requires
solution of the transient pore fluid flow equation followed by a deformation analysis at
cach time step. This is not a boundary-only formulation, and complete volume discretization
is necessary. As an cxample, the consolidation of a strip foundation was examined. Aramaki
and Yasuhara (1985) applied this same scheme for axisymmetric poroelasticity, and exam-
ined K, and isotropic consolidation of a cylinder. Once again, for their approach, cclls are
required through the domain.

More recently, the present authors have developed time-domain boundary element
formulations for both two- and three-dimensional problems of poroclasticity (Dargush and
Banerjee, 1989a), which eliminate the need for volume discretization. These formulations
are based upon the fundamental solutions of Nowacki (1966), Cleary (1977) and Rudnicki
(1987). Meanwhile, the corresponding coupled thermoelastic BEM is provided in Dargush
and Banerjee (1989b, 1990), along with a summary of the well-known analogy. The present
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work extends these BEM formulations to axisymmetric consolidation, and thus provides
the first boundary-only solution for this class of problems.

In the next section, the governing differential and integral equations are presented for
general three-dimensional poroelastic bodies. Then, the integral formulation is specialized
for the axisymmetric case via a transformation to cylindrical coordinates. The result is
an exact integral equation for axisymmetry. However. for practical engineering analysis.
approximations must be introduced in order to solve the applicable initial-boundary value
problem. The necessary approximations are provided in the section on numerical implemen-
tation, which describes the present boundary element method. Finally. several numerical
examples are investigated which highlight the attractiveness of the BEM approach.

Indicial notation is used throughout. Thus. summations are implied by repeated indices.
commas represent differentiation with respect to spatial coordinates, and a superposed dot
denotes a material time derivative.

GOVERNING EQUATIONS IN THREE DIMENSIONS

The differential equations governing three-dimensional consolidation, as developed by
Biot (1941). can be written in the following Cartesian form (Dargush and Banerjee, 1989a) :

(':'+/‘)"I.:/'+”“n.//—'/fp.l‘h/:‘ =0 (lll)

!.
Kp.,, — <11_ ;.)"" B, ,+ = 0. (Ib)

In (1), u, represents the displacement, p is the excess pore pressure, f; is the body foree per
unit volume, and ¢ is the time rate of volumetric fluid supply per unit volume. Latin indices
vary from onc to three. Meanwhile, 4 and u are the drained Lam¢ clastic constants, 4, is
the undrained clastic modulus, x is the permeability and

3 A—4

= ST 2
4 B<u..+2u> %)

where B is Skempton's pore pressure cocflicient. For media in which both the fluid and
solid constituents arc incompressible, # = 1. Additionally, the coetlicient of consolidation

is defined as
A=A\ [ A+2u
N Bt LT 2
& “( 5 )(zu+2u) (20)

while the drained elastic modulus £, drained Poisson’s ratio v, and undrained Poisson’s
ratio v, are written as

_ HGA+3p) :
E="Gww (2e)
J
P 2
Y ESGE (2d)
’ ’ (2¢)
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The corresponding integral equations can be developed either by operating directly on
(1) or by starting with the poroelastic reciprocal theorem defined by Ionescu-Cazimir
(1964). With zero initial conditions and the absence of body forces and sources, both
approaches lead to the following integral equations (Dargush and Banerjee, 1989a):
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cp(Dup(S.7) = f (96 (X2 S 1) %15 (X) = £ (X 0 1) # g (X)] S (Y) &)

in which the concept of generalized displacement (1) and traction (¢,) is introduced with
pore pressure and mass flux (¢) occupying their respective four components. Thus,

wy={u, u, wuy pit (4a)

oo (4b)

]

ty

All Greek indices in (3) vary from one to four. Additionally, g,, and f,, represent kernel
functions, which are derived from the fundamental solutions of three-dimensional poro-
elasticity (Nowacki. 1966 ; Cleary. 1977). These are defined in Dargush (1987) and Dargush
and Banerjee (1989a.b. 1990). The integration is conducted over the surface of the body S
and over time, from zero to t, as indicated by the standard symbol () for Riemann
convolution integrals. Lastly. the tensor ¢, depends only upon the local geometry at &, and
reduces to a generalized delta function Jy, for ¢ inside S. Notice. in particular, that the
displacement and pore pressure are written strictly in terms of boundary quantities, and
that domain integrals are not involved. Consequently, the present approach differs sub-
stantially from that of Banerjee and Butterficld (1981) and Aramaki and Yasuhara (1985).

As discussed in Dargush and Banerjee (1989a), the kerncels g, and f;, can be separated
into steady-state and transient components. That is,

i = Gy + 95, (5a)
_/}fz = Ir/l: +_/;Ir1 (Sb)

In this form, all the singularities are contained in the steady-state Gy, and Fy, components.
The remaining transient portion is completely non-singular.

INTEGRAL FORMULATION FOR AXISYMMETRY
For axisymmetric geometry, it is convenient to introduce a cylindrical coordinate
system (r, 0, 2). In this system, the surface 8 is formed by the generator C which lies in the
r-z plane as shown in Fig. 1.

o

e

~

rst--r—---q-----

-

Fig. 1. Axisymmetric gcometry.
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Transforming the generalized displacements and tractions to this cylindrical system
produces

i, = Tyhuy (6a)
o= Tuly (6b)
where

i, ={u w u. p}’ (7a)
L={t t, t. q7 (7b)

cos8 —sin8 0 0

sin @ cos8@ 0 O
To, = 8
’ 0 0 1 0 ®)

0 0 0 |1

Then, after introducing (5)-(8), the governing integral equations can be rewritten as
(Tﬂx(‘;:)ﬁﬂ(i- 1) = f J [G/h(X; ‘f);ﬂ(X- 7) - Fnz(Xl Sz)ﬁ/l("“ 1)) di dC
« Jo

+j f (G (X E ) » 1,00 =T hdX: E D) » (X)) dO AT (9)
¢ Ju

where
G = TyyG,s Tsur (10a)
Fpa = TyFuTur (10b)
G = Typgys Tour (10¢)
Ji= Ty S5 Toar (10d)
e = Toyc,s Tons (10¢)

with T, representing the transformation in (8) evaluated at ¢.

Restricting the response, to the purely axisymmetric case, eliminates all circumferential
variation of the generalized displacements and tractions. In that case, 1, = O and 1, = 0. As
a result, the second degree of freedom can be eliminated from consideration, and (9) can
be collapsed 1o a set of three equations. Thus, the quantitics in (9) are redefined such that

dy=1{u, u, p}’ (11a)
p=1{t, . q}'. (11b)
Additionally,
G, G. G,
Gﬂﬂ = G:r G:: G:p (IZ)
Gy G G

with similar notation holding for £y,, g5, /&, and &,. With this in mind, eqn (9) becomes:
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Eﬁx(:)aﬁ(:- 1') = J~ [Gﬂz(‘Y: é)t-y(X~ t)—ﬁﬂx(x; é)aﬂ(X~ t)] dC
C .

+f J- (G5 (X 8 D)« 1,(X) = (X5 &) » 4 (X)]AOAC  (13)
C Jo

where

Gya = J "G do (14a)
0

£y = f " F, do. (14b)
0

This circumferential integration in (14) can be evaluated analyucally in terms of elllptlc
integrals for all of the steady-state components. The components G,.G,..G,.G...E,FE..

£, and F,. are identical to those of axisymmetric elasticity. Their explicit form is defined in
Henry et al. (1987). Meanwhile, G, and £,, are the potential flow axisymmetric kernels as
presented in Banerjee and Butterfield (1981). The coupling terms G,,. G F, and F are
given by Bakr and Fenner (1983) in their formulation for steady-state thcrmodasucuy “The
remaining components for the steady kernels are zero. For reference, the entire Gy, and £,
kernels are provided in a consistent notation in Dargush (1987) and defined here in Appen-
dix A.

The integral equations (13) are exact statements for axisymmetric quasistatic poro-
clasticity. However, for the solution of practical problems of soil consolidation, approxi-
mations must be introduced. For example, unlike the above treatment for the steady-state
components, the circumferential integration of the transient portion of the kernels cannot
be expressed in closed form. The numerical treatment of (13) is the subject of the next
section.

NUMERICAL IMPLEMENTATION

Details of a numerical algorithm for two and three-dimensional poroelasticity have
been given previously by Dargush and Banerjee (1989a). Consequently, this section will
focus on those items which are of particular importance to axisymmetry.

The application of (13) for engincering analysis requires discretization and approxi-
mation in both time and space. For the temporal representation, the time from zero to ¢
is subdivided into N equal increments of duration Atr. Within each increment, the primary
variables i, and 7, are assumed constant. Thus, during the ath time step, the generalized
displacements and tractions are @3(X) and 7(X). As a result, the integral equations take
the form

G (&Y (E) = L (G (X5 O (X) = Ep(X: i) (X)] dC

{J (G (X &0 — B3 (X C)x?‘(X)]dC} (15)
n-l

where
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G‘;';nn = f_ G;’—Ml d¢ (|6a)
b
F;‘l—-r+i =J' Fg;«n-'ri dé (16b)
0
with
. LAY
pomTHXD) =f o FRlX &y de (17a)
(n— AT
- nir
Fim X =J Fe(X & nde (17b)
- Ar

In light of the transformation (10}, eqns (17) can be rewritten as

Gr" ' = TyGX " ' Tor (18a)
Fyomel = Tkt ' Tar (18b)

where the Cartesian transient kernels are

LAY

Gy K E) =J A IR I (19a)
{n - 11Ae
nAt

FY X G = J. Ss(Xor & de (19b)
(n t)Ar

The time integration present in (19) can be performed analytically. The resulting transient
kernets G "' and F5 "*! are provided in Appendix B. These comprise the transient
portion of the three-dimensional time-integrated kernels employed in Dargush and Banerjee
(1989a). It should be emphasized that G5 "' and FJ5 "+ are completely non-singular,

Although the integration in (19) is determined analytically, it is not possible to evaluate
the circumferential integral of (16) in closed form. Consequently, this integration is per-
formed numerically. Since the kernels involved are non-singular, standard Gauss quadrature
formulas arc applicable. However, for X in the proximity of &, subsegmentation and higher-
order Gaussian rules are required to control error. As time progresses, the transient portions
of the poroclastic kernels not only diminish in magnitude, but also become more gradual
in their spatial variation. In order to take full advantage of this behavior, the present
implementation employs adaptive circumferential integration schemes which depend upon
the spatial relationship between X and &, as well as the time elapsed between ¢ and t.
Eventually, the subscgmentation is eliminated and only a few Guuss points are required
even for nearby points.

With the temporal and circumferential integration completely defined, it remains to
consider the discretization of € in the r-= plane. For this, the approach taken by Henry et
al. (1987) is utilized. Three-noded quadratic, conforming surface clements are employed
with cither lincar or quadratic variation of the generalized displacements and tractions.
Integration is accomplished numerically through the use of adaptive subsegmentation and
Gaussian quadrature. The strongly-singular £, kernel components are determined via the
indirect rigid body and inflation mode techniques. During the first time step, when N = |,
both steady and transient kernels must be integrated. That is, from (15), integration of G,,,
and G, is required for multiplication by ¢}. while F;, and £}, are needed in conjunction
with u;. However, for subsequent time steps, only the transient non-singular kernels, G p
and ﬁ;}‘,. must be integrated. For example, with ¥ = 2, eqn (15) can be written as
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(D (5 = L[G‘ﬂ,(z\’: X)) = F(X: OE3(X)]dC
+L[G}},(X; HFX) = Fj(X; O)az(X)}dC
+L[G‘§,(X: O (X) = E5(X: Oag(X)]dC.  (20)

The first four kernels in(20) were already determined during the first time step. as discussed
above. Thus, only G}, and Fj, require integration.

Collocation provides the basis for the development of the system of governing algebraic
equations. Thus, the spatially-discretized version of (15) is written at each boundary node.
After imposition of the boundary conditions, the system equations are solved at each time
step by invoking a LINPACK-based solver. Afterward, secondary boundary quantities,
such as effective stresses. can easily be determined from the constitutive law, along with
compaltibility relationships.

Since the implementation is accomplished within a general-purpose boundary element
code. a number of additional features are readily available for practical enginecring analysis.
Perhaps the most significant of these items is the ability to analyze substructured problems.
This not only perntits extension of the formulation to multilayered soils, but often provides
computational efticiencics. Another important feature concerns the availability of enclosing
clements which were first cmployed for time-dependent problems by Ahmad and Banerjee
(1988). Enclosing clements allow for closure of bodics of infinite extent for the determination
of the coeflicients corresponding to the strongly-singular integrals. The nodes associated
with enclosing elements do not contribute unknowns or cquations to the overall system.
Furthermore, since the fundamental solutions automatically satisfy the radiation conditions
on infinite boundaries, there is no need to introduce artificial boundarics as is typically done
in finite clement analysis. Other capabilities include symmetry about the r-0 plane, sliding
interfaces, time-dependent boundary conditions, and the use of local coordinates. Several
of these features are illustrated in the next section, which focuses on the validation of the
new poroclastic BEM formulation.

APPLICATIONS

Consolidation of a sphere

As a first example, the classical problem of the consolidation of a sphere is considered.
This problem was first solved by Cryer (1963) in terms of an infinite series, and formed the
basis of a compitrison between the consolidation theories of Biot and Terzaghi.

For the boundary element analysis, the four element model depicted in Fig. 2 was
cmployed. Each ¢lement permits quadratic variation of the generalized displacements and
tractions. Symmetry about the r-0 plane is assumed. One interior point is also included to
monitor responsce at the center of the sphere.

All dimensions and material properties are normalized to correspond to thosce used by
Crycr. Thus, for example,

(]
M= 2”' — (21a)
i = ﬁiﬁ (21b)

with the subscript ¢ signifying Cryer's notation. Furthermore, let
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CONSOLIDRTION OF R SOLID SPHERE

Boundary Element Mgode!

® Corner node
O Midnode
X Imtertar point

Fig. 2. Consolidation of a sphere—boundary element method.

where « is the radius of the sphere. As a result, the radial displacement can be written as
Uw(R, T) and the pore pressurc as P(R, T).

The boundary element solutions, obtained from the general-purpose computer pro-
gram GPBEST, are compared to the series of solutions in Figs 3 and 4. Three cases

CONSOLIDATION OF A SPHERE

Radia! Displacement
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Fig. 3. Consolidation of a sphere—radial displacement.



BEM for axisymmetric soil consolidation 905

CONSOLIDATION OF A SPHERE

Pore Pressure vs Radial Displacerent
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Fig. 4. Consolidation of a sphere—pore pressure vs radial displacement.

(1. = 0.50, 0.25 and 0.01) are considered. In general, excellent correlation with the results
of Cryer is obtained. Notice, in Fig. 4, the initial increase in pore pressure with increasing
Uy for u, = 0.50 and u, = 0.25. This phcnomenon is the well-known Mandel-Cryer effect
which is present in Biot's theory, but absent for Terzaghi consolidation. For y, = 0.0, the
governing equations of Biot reduce to those of Terzaghi, such that no Mandel-Cryer
effect exists. It is evident from the graphs that the present boundary clement formulation
accurately reproduces the entire range of this behavior,

Consolidation under a circular load

Analytical solutions are also available for the consolidation of a single poroelastic
stratum beneath a uniform vertical circular load. Let H represent the depth of the soil layer
and «a be the radius of the loaded area. The lower boundary of the soil layer is smooth, but
impervious, while free drainage is permitted along the entire upper surface. For comparison
non-dimensional forms of the material parameters are utilized. In particular, let £ = 1.0,
v=0.0,x=10,v,=0.5and B = 1.0. (The diffusivity is unity for this sct of propertics.)

A uniform traction ¢, = — 1.0 is applied over the circular area suddenly at time zero
and then maintained at that level. In this investigation, two cases are considered, H/a = 1.0
and 10. Both were examined by Gibson et al. (1970), who provided a semi-analytical
solution for these axisymmetric problems.

The boundary element mesh employed for the GPBEST analysis is provided in Fig. 5
for H/a = 10. Considerable refinement is used near the loaded region. Additionally, notice
that the mesh is truncated at a distance r/a = 40. Beyond that distance, the upper and lower
surfaces have negligible contribution. However, since the rigid body and inflation mode
techniques are utilized, several enclosing elements are introduced to ensure the accurate
calculation of the strongly-singular diagonal blocks of F5,. A topologically-similar model
was also used for the H/a = 1.0 case. The boundary element results for the single poroelastic
layer are compared with those of Gibson et al. in Fig. 6, where the non-dimensional time

T="2 (23a)
a

and the degree of consolidation
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Fig. 5. Consolidation under a circubir load —boundary clement model.

U.(r)=U.(O)
IR o e el 5
U ) - U0 (23b)

with U.(z) representing the vertical displacement of the soil at the center of the loaded arca
at time 1. From the figure, the degree of consolidation correlates very well over the entire
process, thus validating the boundary clement formulation for bodies of infinite extent.
Multilayer analytical solutions are not available, however the present BEM can be
readily applied. For example, consider two soil fayers. The upper layer has a depth H, = 2,

CONSOL.IDATION UNDER A CIRCULAR LOAD

Single Layer Results
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Fig. 6. Counsolidation under a circular load —single-layer results.
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CONSOLIDATION UNMDER R CIRCULAR LOARD

Two Layer Boundary Element Model
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Fig. 7. Consolidation under a circular loud—two-layer boundary element model.

while the thickness of the bottom layer is /, = 8. It is assumed that £ = 1.0, v = 0.0,
v, = 0.5 and 8 = 1.0 for both soils, while the value of the permeability may differ.

The boundary clement mesh for the two-layer analysis is shown in Fig. 7, and the
results are provided in Fig. 8. Here, the non-dimensional time is with respect to the coefficient
of consolidation of the upper layer. As expected, if the lower soil is more permeable, then
the consolidation process is expedited. On the other hand, while a less permeable layer
retards consolidation, this cflect is not as dramatic. Naturally, this analysis could be
extended to several additional layers, cach with different poroelastic material constants, At
this point, it is worth mentioning that since the present BEM formulation utilizes a fully

CONSOLIDATION UNDER A CIRCULAR LOAD
Two Layer Results (Hl =2; H2 =8; a = 1)
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Fig. 8. Consolidation under a circular load—two-layer results.
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implicit time-marching scheme, stable numerical results are produced over a wide range of
time steps. Thus. the method can handle problems for which the coefficient of consolidation
of various layers differs by several orders of magnitude.

Consolidation around a pile

For the final application, consolidation around a vertically-loaded permeable pile is
examined. The straight. flat-bottomed, cylindrical pile has a length (L) of 30 ft and a 2 ft
diameter (D). The second under-reamed pile, detailed in Fig. 9, was also investigated for
comparative purposes. In both cases, the pile is assumed to be fully-saturated concrete with
the following poroelastic properties:

E =3.0x10°psi
v=0.3
v, =041

k=10x10""ins"'
7. = 0.036 b in"?
K = k/y.,.

Mcanwhile, the surrounding soil, which occupies the remainder of a half-space, is
assumed to be a uniform, isotropic clay. The clay propertics are taken as:

E=15x% 10" psi
v=0.2
v, =0.5

k=80x10 *ins '

CONSOLIDATION ARCUND A PILE

Under-reamed Pile

z2(ft)

-40. 1 1 1

o
a
T
R
® % 5

r(fe)
Fig. 9. Consolidation around a pile—under-reamed pile.
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7% =0.0361bin" >,

The pile-soil interface is considered fully bonded.

Starting at time zero, a uniform downward vertical traction is continuously appilied to
the head of the pile. In the boundary element analysis of the ensuing consolidation process,
a two-region model is required. The pile model includes refinement near the top and bottom
corners. Discretization of the soil is only needed along the pile interface and the half-
space surface. Consequently, the modeling required for this problem is minimal. Enclosing
elements, once again, permit the finite truncation of the mesh without a significant effect
on the solution accuracy.

The consolidation history for the two types of piles is plotted in Fig. 10. In the abscissa,
the dimensionless time (7') is determined from the radius of the pile (R) and the coefficient
of consolidation of the soil (¢, .,). Thus,

T= CrsoitT (24)

while the ordinate depicts the degree of consolidation based upon the pile head settlement.
Notice that in comparison with Fig. 6, the consolidation around this long narrow object
(i.c. the pile) is very slow. For the straight pile qnly 57% of the process is complete for
T = 133. The under-reamed pile, having a somewhat bigger base, consolidates slightly
faster. However, for both piles the fully-drained scttlement is only about 15% greater than
the instantancous undrained response.

Besides settlement, load resistance and interface shear stresses are also of interest. In
the straight pile, approximately 4% of the applied axial load is reacted by normal tractions
on the basc of the pile. The remainder is resisted by shear along the shaft face. The
distribution of shear stress along the length of the pile is shown a short time after application

CONSOLIDATION AROUND A PILE
GP-BEST Results
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Fig. 10. Consolidation around a pile—degree of consolidation.
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CONSOLIDATION ARROUND R PILE
GP-BEST Results
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Fig. 11, Consolidation around a pile—shear stress on straight pile.

(i.c. T = 1.5) and under draincd conditions (i.c. T = o0), in Fig. | 1. The drained results are
quite similar to thosc obtained by Butterficld and Banerjec (1971) for moderate L/D
compressible piles. However, notice that that short time response includes much higher
shear stresses near the surface of the half-space. In Fig. 12, the corresponding results are
presented for the under-reamed pile. While the shear stress over much of the length is lower
than that for the straight pile, there exists considerable stress concentration in the region
of gcometric transition. Once again, high shear stress occurs near the surface at short times.

CONSOL.IDATION ARRCUND R PILE
GP—-BEST Results

.
af + *
o +
Undaer-Reamed Pile o+
+ T=1.5 o
=] T = .
-.25 -]
L 2]
: +0
<
N +0
£ -.5ar +0
-
& +0
=
+ Q0
+ QO
=75 + O
O+
o]
a
~-1.@2a & a 1 £
.@ .5 1.0 1.5 2.e

Shear Stress at Shaft Face G« LD/P)

Fig. 12. Consolidation around a pile—shear stress on under-rcamed pile.
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Finally, it should be noted that the under-reamed pile base reacts approximately 12%
of the applied load under drained conditions, and roughly 15% during the initial stages of
consolidation.

CONCLUSION

A boundary element method has been developed for axisymmetric problems governed
by Biot’s consolidation theory. Unlike previous approaches, the present formulation is
written directly in the time domain and invokes only boundary quantities. Volume dis-
cretization is completely eliminated. Additionally. since the kernel functions satisfy the
radiation boundary conditions, there is no need to introduce artificial boundaries or con-
ditions for problems involving regions of infinite extent in one or more spatial dimensions.

In the formulation, the three-dimensional fundamental solution is decomposed into
steady-state and transient components. The steady-state components are integrated semi-
analytically in the circumferential direction, while the remaining non-singular transient
portions are treated numerically.

The entire numerical implementation is accomplished in a general manner. including
quadratic elements and multiple regions. Several examples were investigated in detail to
emphasize the accuracy and attractiveness of this new BEM.
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APPENDIX A: AXISYMMETRIC STEADY-STATE POROELASTIC KERNELS
This Appendix details the generalized boundary kernels for axisymmetric steady-state poroelasticity. These
kernels are used in conmjunction with numerical tangential integration of the trunsient portion of the three-

dimensional kernels to produce solutions tor axisymmetric soil consolidation.
In the following.

Y=1x =R ZiT coordinates of integration point or ring source.

=23 =1!r 21T coordinates of field point.

v

n(R.Z) normulin rdirection at integration point.

n(R.Z) normalin = direction at integration point.

The indices i, j assume the values | and 2 only or. equivalently r and =. Meanwhile. the index p refers to a pore

pressure ot flux component in the third position of the generalized displacement or traction vector. respectively.

Thus. for example. u, is the pore pressure, while ¢, represents the flux. The Greek indices . f vary from | to 3.
Then. for the displacement kernel, let

Gy = oAy K(o) + B E(m)
where

K(m) = complete Elliptic Integral of the first Kind

E(n) = complete Elliptic Integral of the second Kind

I . .oM72¢
A, .:rR'”(I;,MrZ y B, = -, (I»,II'+ K )

Rl p
a,? a,’

g, o= T
i 77 Bi. Ryt
A, = _ﬂu.Z B - {1,‘7. v

’ rli rp

du, VA
A = B,
Le= I Bo= ey
A, =0 B, =0
1, =0 B,=0
= aN 8 = 73y7)
T ¢ r
2u,7
A= =55 B =0
2u,
/’/'I' = Al! B”, =10
2=7~:

HY=(R+n*+2"
P =R~-ry+27
M=R+r' 42}
N=R'=-r’4+2°
=R ~r -2

_ ARr
m= g
R
G iy TG
Rf
Uy =
S drk(A+20)
R
a, = ;—
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While, for the traction kernel,

o 1+ R? M2: H 4 N2
F, = [(’r;H )a:xK(m)+(’—RHp: - m)a;xE(m)]n,+[(m)a:'fK(M)—(’sz)azk'f('ﬂ)]m
2
f.',: = —(—Ez’—i)a:xK(m) (R’:lz,)aan(m):ln +[(—:—,)a,xl((m)—(%)5(m)]n:
| 2(R— l 22
£, = [(RH>¢I,I\K(m)+( (pZH r RH)a,AE(m):In +|:(;-:—’~{)E(m):|n:

where

PR N NI
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= N+22}

2
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APPENDIX B: THREE-DIMENSIONAL TRANSIENT POROELASTIC KERNELS

This appendix contains the detailed presentations of ull the transient kernel functions utilized in the poroelastic
boundary element formulation. These three-dimensional kernels are based upon continuous source and force
fundamental solutions. As a result, the following relationships must be used to determine the proper form of the
functions required in the boundary element discretization. That is,

G AN 3) = G X Sondr) for n=1
Gl X:§) = G X EnAD) —Gp{X i (n— DAY for n> 1,

with similar expressions holding for the remaining kernels. In the specification of these kernels below, the
arguments (X; ¢, r) are assumed.

The indices
i, jok.tvary from Lto 3
2 Bvary from Lo 4
pequals 4.
Additionally,

x, coordinates of integration point

&, coordinates of ticld point

Y= X
=y
r
" (e,r)"?
v, =¥
‘o= [—x

For the geneealized transient displacement kernel,

1 i A .

~ oL 3,4
G, Tomr =) [( - )q.(ryn—(x ,,)x/.(m}
G, = n mn

v #47: A(A+’;z) y Jo
e (020
G = |

w = amr \n {g.(m}

whereas, for the generalized transient traction kernel,

- 1 1 Kl /}&Rk (o Valle + 3,08, ¥,
ﬁ'“i&‘?‘i‘-’-‘;[‘( )f«“ ( e )f( )+(* )f;(r:)]

e

. up yubum
i i;';(x(i+211))[( )ﬁ('f’”" )f,(rn]
= ! - f l}k"k _
£y = {;‘,}‘;(“_2“)[( )fn('f) (n, )fr('l)}
1 yon,
oo = g (--)f.( )]
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In the above,

-

erf (2) = — e dx
N 0
v ﬁh
hy(n) = erf(!)._ ~”_/_e<q'l K, = LTl
- n cn
N
6h .
By = S s
n- \/n

g:1(m = ¢, {h{m —h:(n)}
h-(n) 2 ,
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) RN
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2
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"
n
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! Sh,
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Jiny = ~c\th,~h,}
Sin) = ¢y {hl +h,!
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£ = ky 3y
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Oh
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